Functionally Selective Signaling for Morphine and Fentanyl Antinociception and Tolerance Mediated by the Rat Periaqueductal Gray
نویسندگان
چکیده
Functionally selective signaling appears to contribute to the variability in mechanisms that underlie tolerance to the antinociceptive effects of opioids. The present study tested this hypothesis by examining the contribution of G protein-coupled receptor kinase (GRK)/Protein kinase C (PKC) and C-Jun N-terminal kinase (JNK) activation on both the expression and development of tolerance to morphine and fentanyl microinjected into the ventrolateral periaqueductal gray of the rat. Microinjection of morphine or fentanyl into the periaqueductal gray produced a dose-dependent increase in hot plate latency. Microinjection of the non-specific GRK/PKC inhibitor Ro 32-0432 into the periaqueductal gray to block mu-opioid receptor phosphorylation enhanced the antinociceptive effect of morphine but had no effect on fentanyl antinociception. Microinjection of the JNK inhibitor SP600125 had no effect on morphine or fentanyl antinociception, but blocked the expression of tolerance to repeated morphine microinjections. In contrast, a microinjection of Ro 32-0432 blocked the expression of fentanyl, but not morphine tolerance. Repeated microinjections of Ro 32-0432 blocked the development of morphine tolerance and inhibited fentanyl antinociception whether rats were tolerant or not. Repeated microinjections of SP600125 into the periaqueductal gray blocked the development of tolerance to both morphine and fentanyl microinjections. These data demonstrate that the signaling molecules that contribute to tolerance vary depending on the opioid and methodology used to assess tolerance (expression vs. development of tolerance). This signaling difference is especially clear for the expression of tolerance in which JNK contributes to morphine tolerance and GRK/PKC contributes to fentanyl tolerance.
منابع مشابه
Synergistic antinociceptive actions and tolerance development produced by morphine-fentanyl coadministration: correlation with μ-opioid receptor internalization.
It has been described that coadministration of opioids with low doses of other analgesics can reduce adverse effects and increase antinociception, but combinations of two μ-opioid receptor agonists have been poorly explored. The objective of this work was threefold: 1) to evaluate the antinociceptive combination of i.c.v. morphine and fentanyl at different doses; 2) to compare the antinocicepti...
متن کاملDifferential development of antinociceptive tolerance to morphine and fentanyl is not linked to efficacy in the ventrolateral periaqueductal gray of the rat.
UNLABELLED Systemic administration of morphine typically produces greater tolerance than higher efficacy mu-opioid receptor (MOPr) agonists such as fentanyl. The objective of the present study was to test this relationship by measuring antinociceptive efficacy and tolerance to morphine and fentanyl microinjected into the ventrolateral periaqueductal gray (vlPAG). MOPr agonist efficacy was evalu...
متن کاملEffects of Electrolytic Lesions of the Ventrolateral Periaqueductal Gray and Nucleus Raphe Magnus on Morphine – Induced Antinociception in the Nucleus Cuneiformi
A B S T R A C TIntroduction: The nucleus cuneiformis (NCF) and ventrolateral periaqueductal gray (vlPAG), two adjacent areas, mediate the central pain modulation and project to the nucleus raphe magnus (NRM). Methods: This study examined whether the antinociceptive effect of morphine microinjected into the NCF is influenced by inactivation of vlPAG and NRM in rats. Animals were bilaterally micr...
متن کاملExtracellular signal-regulated kinase 1/2 activation counteracts morphine tolerance in the periaqueductal gray of the rat.
Repeated administration of opioids produces long-lasting changes in micro-opioid receptor (MOR) signaling that underlie behavioral changes such as tolerance. Mitogen-activated protein kinase (MAPK) pathways, including MAPK extracellular signal-regulated kinases (ERK1/2), are modulated by opioids and are known to produce long-lasting changes in cell signaling. Thus, we tested the hypothesis that...
متن کاملLow dose combination of morphine and delta9-tetrahydrocannabinol circumvents antinociceptive tolerance and apparent desensitization of receptors.
Morphine and delta9-tetrahydrocannabinol (THC) produce antinociception via mu opioid and cannabinoid CB1 receptors, respectively, located in central nervous system (CNS) regions including periaqueductal gray and spinal cord. Chronic treatment with morphine or THC produces antinociceptive tolerance and cellular adaptations that include receptor desensitization. Previous studies have shown that a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014